↧
Answer by gnasher729 for Which is threadsafe atomic or non atomic?
There's another property of "atomic" that wasn't mentioned which was needed for thread safety before ARC (and probably still is). First explaining why it's needed: Let's say without ARC, you read an...
View ArticleAnswer by Nathan Day for Which is threadsafe atomic or non atomic?
atomic makes doing the following thread safe.self.myProperty = value;orid value = self.myPropertyit does not make the following thread safe[myPorperty addObject:value];Atomic makes it thread safe to...
View ArticleAnswer by justin for Which is threadsafe atomic or non atomic?
For ObjC Properties -- Neither are thread safe.Atomic is more resistant to threading errors. Overall, it is a curious default. The scenarios you would favor atomic for are very few. Atomic can increase...
View ArticleAnswer by StackRunner for Which is threadsafe atomic or non atomic?
You should consider implementing a locking mechanism so you don't get deadlock within your app. Also if you are implementing Core data you should read up on iOS thread...
View ArticleAnswer by Asciiom for Which is threadsafe atomic or non atomic?
atomic guarantees atomic access to the variable but it DOESN'T make your code thread safe. Neither does non-atomic.With "atomic", the synthesized setter/getter methods will ensure that a whole value is...
View ArticleWhich is threadsafe atomic or non atomic?
I searched and found immutable are thread safe while mutable is not. This is fine.But i got misleading notes, blogs, answers about atomic vs non-atomic about thread safety, kindly give an explanation...
View Articlescikit-learnメモ:サンプルデータセットの読み込み方
機械学習を使うための処理の書き方を勉強する上でお世話になるのがサンプルデータセットですが,scikit-learnはRとは読み込み方が異なって面倒くさかったため,メモしておきます。iris データセット定番のirisデータを例にしてみます。Rだとdata(iris)あるいは単にirisで済みますが,sklearnでは以下のように書きます。from sklearn import datasets...
View Article[Python]予測モデル作成の一連の流れのメモ
Pythonで予測モデルを作るときの大まかな流れの雛形みたいなやつ(自己流なので正しいかはわかりませんが…)をメモしていきます。1. データの読み込みと確認データの確認データ間の関係を確認データの可視化(単変量)データの可視化(多変量)相関行列・ヒートマップ等グラフ2. 前処理ドメイン知識の収集・整理特徴量エンジニアリングデータのクリーニングデータの分割3....
View Articlescikit-learn Pipelineの基本の使い方
個人的に業務ではよく使うのでもっと多くの人に認知されてほしいという想いを込めてメモPipelineとはscikit-learnにはPipelineというclassがある。これは複数の前処理用クラスと予測モデルをまとめて一つのオブジェクトにすることができるもの。例えば、StandardScalerで特徴量の標準化を行って線形回帰で学習/予測を行う場合、Pipelineを使わない場合は以下のようにSta...
View Article
More Pages to Explore .....